Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658746

RESUMO

Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5-7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.

2.
Nat Commun ; 15(1): 1100, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321017

RESUMO

Mountains are among the most biodiverse places on Earth, and plant lineages that inhabit them have some of the highest speciation rates ever recorded. Plant diversity within the alpine zone - the elevation above which trees cannot grow-contributes significantly to overall diversity within mountain systems, but the origins of alpine plant diversity are poorly understood. Here, we quantify the processes that generate alpine plant diversity and their changing dynamics through time in Saxifraga (Saxifragaceae), an angiosperm genus that occurs predominantly in mountain systems. We present a time-calibrated molecular phylogenetic tree for the genus that is inferred from 329 low-copy nuclear loci and incorporates 73% (407) of known species. We show that upslope biome shifts into the alpine zone are considerably more prevalent than dispersal of alpine specialists between regions, and that the rate of upslope biome shifts increased markedly in the last 5 Myr, a timeframe concordant with a cooling and fluctuating climate that is likely to have increased the extent of the alpine zone. Furthermore, alpine zone specialists have lower speciation rates than generalists that occur inside and outside the alpine zone, and major speciation rate increases within Saxifraga significantly pre-date increased rates of upslope biome shifts. Specialisation to the alpine zone is not therefore associated with speciation rate increases. Taken together, this study presents a quantified and broad scale perspective of processes underpinning alpine plant diversity.


Assuntos
Saxifragaceae , Filogenia , Ecossistema , Clima , Biodiversidade
3.
Mol Phylogenet Evol ; 186: 107861, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37329931

RESUMO

Estimates of the age of angiosperms from molecular phylogenies vary considerably. As in all estimates of evolutionary timescales from phylogenies, generating these estimates requires assumptions about the rate that molecular sequences are evolving (using clock models) and the time duration of the branches in a phylogeny (using fossil calibrations and branching processes). Often, it is difficult to demonstrate that these assumptions reflect current knowledge of molecular evolution or the fossil record. In this study we re-estimate the age of angiosperms using a minimal set of assumptions, therefore avoiding many of the assumptions inherent to other methods. The age estimates we generate are similar for each of the four datasets analysed, ranging from 130 to 400 Ma, but are far less precise than in previous studies. We demonstrate that this reduction in precision results from making less stringent assumptions about both rate and time, and that the analysed molecular dataset has very little effect on age estimates.


Assuntos
Magnoliopsida , Filogenia , Magnoliopsida/genética , Modelos Genéticos , Teorema de Bayes , Evolução Biológica , Evolução Molecular , Fósseis
4.
Trends Plant Sci ; 27(6): 524-527, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35450796

RESUMO

Disagreements over how to define species potentially render them incomparable, yet biologists routinely count and compare species. This 'species problem' persists despite the wealth of data and methods available to contemporary systematists. A heuristic approach to species provides a consistent yet flexible means of selecting, assessing, and integrating different biological data.


Assuntos
Heurística
5.
Syst Biol ; 71(5): 1124-1146, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35167690

RESUMO

Phylogenetic analyses are increasingly being performed with data sets that incorporate hundreds of loci. Due to incomplete lineage sorting, hybridization, and horizontal gene transfer, the gene trees for these loci may often have topologies that differ from each other and from the species tree. The effect of these topological incongruences on divergence time estimation has not been fully investigated. Using a series of simulation experiments and empirical analyses, we demonstrate that when topological incongruence between gene trees and the species tree is not accounted for, the temporal duration of branches in regions of the species tree that are affected by incongruence is underestimated, whilst the duration of other branches is considerably overestimated. This effect becomes more pronounced with higher levels of topological incongruence. We show that this pattern results from the erroneous estimation of the number of substitutions along branches in the species tree, although the effect is modulated by the assumptions inherent to divergence time estimation, such as those relating to the fossil record or among-branch-substitution-rate variation. By only analyzing loci with gene trees that are topologically congruent with the species tree, or only taking into account the branches from each gene tree that are topologically congruent with the species tree, we demonstrate that the effects of topological incongruence can be ameliorated. Nonetheless, even when topologically congruent gene trees or topologically congruent branches are selected, error in divergence time estimates remains. This stems from temporal incongruences between divergence times in species trees and divergence times in gene trees, and more importantly, the difficulty of incorporating necessary assumptions for divergence time estimation. [Divergence time estimation; gene trees; species tree; topological incongruence.].


Assuntos
Fósseis , Modelos Genéticos , Simulação por Computador , Hibridização Genética , Filogenia
6.
Biol Open ; 11(2)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35147180

RESUMO

We present a method of divergence time estimation (exTREEmaTIME) that aims to effectively account for uncertainty in divergence time estimates. The method requires a minimal set of assumptions, and, based on these assumptions, estimates the oldest possible divergence times and youngest possible divergence times that are consistent with the assumptions. We use a series of simulations and empirical analyses to illustrate that exTREEmaTIME is effective at representing uncertainty. We then describe how exTREEmaTIME can act as a basis to determine the implications of the more stringent assumptions that are incorporated into other methods of divergence time estimation that produce more precise estimates. This is critically important given that many of the assumptions that are incorporated into these methods are highly complex, difficult to justify biologically, and as such can lead to estimates that are highly inaccurate. This article has an associated First Person interview with the first author of the paper.


Assuntos
Fósseis , Humanos , Filogenia , Tempo , Incerteza
7.
New Phytol ; 234(4): 1185-1194, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35064679

RESUMO

The origin of sweetpotato, a hexaploid species, is poorly understood, partly because the identity of its tetraploid progenitor remains unknown. In this study, we identify, describe and characterize a new species of Ipomoea that is sweetpotato's closest tetraploid relative known to date and probably a direct descendant of its tetraploid progenitor. We integrate morphological, phylogenetic, and genomic analyses of herbarium and germplasm accessions of the hexaploid sweetpotato, its closest known diploid relative Ipomoea trifida, and various tetraploid plants closely related to them from across the American continent. We identify wild autotetraploid plants from Ecuador that are morphologically distinct from Ipomoea batatas and I. trifida, but monophyletic and sister to I. batatas in phylogenetic analysis of nuclear data. We describe this new species as Ipomoea aequatoriensis T. Wells & P. Muñoz sp. nov., distinguish it from hybrid tetraploid material collected in Mexico; and show that it likely played a direct role in the origin of sweetpotato's hexaploid genome. This discovery transforms our understanding of sweetpotato's origin.


Assuntos
Ipomoea batatas , Ipomoea , Genoma de Planta , Ipomoea/genética , Ipomoea batatas/genética , Filogenia , Tetraploidia
8.
Syst Biol ; 71(5): 1233-1243, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34672346

RESUMO

Species are crucial to most branches of biological research, yet remain controversial in terms of definition, delimitation, and reality. The difficulty of resolving the "species problem" stems from the tension between their theoretical concept as groups of evolving and highly variable organisms and the practical need for a stable and comparable unit of biology. Here, we suggest that treating species as a heuristic can be consistent with a theoretical definition of what species are and with the practical means by which they are identified and delimited. Specifically, we suggest that theoretically species are heuristic since they comprise clusters of closely related individuals responding in a similar manner to comparable sets of evolutionary and ecological forces, whilst they are practically heuristic because they are identifiable by the congruence of contingent properties indicative of those forces. This reconciliation of the theoretical basis of species with their practical applications in biological research allows for a loose but relatively consistent definition of species based on the strategic analysis and integration of genotypic, phenotypic, and ecotypic data. [Cohesion; heuristic; homeostasis; lineage; species problem.].


Assuntos
Evolução Biológica , Heurística , Humanos , Filogenia
9.
Syst Biol ; 71(2): 301-319, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33983440

RESUMO

The tree of life is the fundamental biological roadmap for navigating the evolution and properties of life on Earth, and yet remains largely unknown. Even angiosperms (flowering plants) are fraught with data gaps, despite their critical role in sustaining terrestrial life. Today, high-throughput sequencing promises to significantly deepen our understanding of evolutionary relationships. Here, we describe a comprehensive phylogenomic platform for exploring the angiosperm tree of life, comprising a set of open tools and data based on the 353 nuclear genes targeted by the universal Angiosperms353 sequence capture probes. The primary goals of this article are to (i) document our methods, (ii) describe our first data release, and (iii) present a novel open data portal, the Kew Tree of Life Explorer (https://treeoflife.kew.org). We aim to generate novel target sequence capture data for all genera of flowering plants, exploiting natural history collections such as herbarium specimens, and augment it with mined public data. Our first data release, described here, is the most extensive nuclear phylogenomic data set for angiosperms to date, comprising 3099 samples validated by DNA barcode and phylogenetic tests, representing all 64 orders, 404 families (96$\%$) and 2333 genera (17$\%$). A "first pass" angiosperm tree of life was inferred from the data, which totaled 824,878 sequences, 489,086,049 base pairs, and 532,260 alignment columns, for interactive presentation in the Kew Tree of Life Explorer. This species tree was generated using methods that were rigorous, yet tractable at our scale of operation. Despite limitations pertaining to taxon and gene sampling, gene recovery, models of sequence evolution and paralogy, the tree strongly supports existing taxonomy, while challenging numerous hypothesized relationships among orders and placing many genera for the first time. The validated data set, species tree and all intermediates are openly accessible via the Kew Tree of Life Explorer and will be updated as further data become available. This major milestone toward a complete tree of life for all flowering plant species opens doors to a highly integrated future for angiosperm phylogenomics through the systematic sequencing of standardized nuclear markers. Our approach has the potential to serve as a much-needed bridge between the growing movement to sequence the genomes of all life on Earth and the vast phylogenomic potential of the world's natural history collections. [Angiosperms; Angiosperms353; genomics; herbariomics; museomics; nuclear phylogenomics; open access; target sequence capture; tree of life.].


Assuntos
Magnoliopsida , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Magnoliopsida/genética , Filogenia
10.
Syst Biol ; 70(6): 1181-1199, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33760070

RESUMO

Phylogenies are increasingly being used as a basis to provide insight into macroevolutionary history. Here, we use simulation experiments and empirical analyses to evaluate methods that use phylogenies as a basis to make estimates of divergence times and rates of diversification. This is the first study to present a comprehensive assessment of the key variables that underpin analyses in this field-including substitution rates, speciation rates, and extinction, plus character sampling and taxon sampling. We show that in unrealistically simplistic cases (where substitution rates and speciation rates are constant, and where there is no extinction), increased character and taxon sampling lead to more accurate and precise parameter estimates. By contrast, in more complex but realistic cases (where substitution rates, speciation rates, and extinction rates vary), gains in accuracy and precision from increased character and taxon sampling are far more limited. The lack of accuracy and precision even occurs when using methods that are designed to account for more complex cases, such as relaxed clocks, fossil calibrations, and models that allow speciation rates and extinction rates to vary. The problem also persists when analyzing genomic scale data sets. These results suggest two interrelated problems that occur when the processes that generated the data are more complex. First, methodological assumptions are more likely to be violated. Second, limitations in the information content of the data become more important.[Divergence time estimation; diversification rates; macroevolution; phylogeny.].


Assuntos
Fósseis , Especiação Genética , Simulação por Computador , Filogenia , Tempo
11.
Syst Biol ; 70(4): 855-861, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33313882

RESUMO

Understanding and representing uncertainty is crucial in academic research because it enables studies to build on the conclusions of previous studies, leading to robust advances in a particular field. Here, we evaluate the nature of uncertainty and the manner by which it is represented in divergence time estimation, a field that is fundamental to many aspects of macroevolutionary research, and where there is evidence that uncertainty has been seriously underestimated. We address this issue in the context of methods used in divergence time estimation, and with respect to the manner by which time-calibrated phylogenies are interpreted. With respect to methods, we discuss how the assumptions underlying different methods may not adequately reflect uncertainty about molecular evolution, the fossil record, or diversification rates. Therefore, divergence time estimates may not adequately reflect uncertainty and may be directly contradicted by subsequent findings. For the interpretation of time-calibrated phylogenies, we discuss how the use of time-calibrated phylogenies for reconstructing general evolutionary timescales leads to inferences about macroevolution that are highly sensitive to methodological limitations in how uncertainty is accounted for. By contrast, we discuss how the use of time-calibrated phylogenies to test specific hypotheses leads to inferences about macroevolution that are less sensitive to methodological limitations. Given that many biologists wish to use time-calibrated phylogenies to reconstruct general evolutionary timescales, we conclude that the development of methods of divergence time estimation that adequately account for uncertainty is necessary. [Divergence time estimation; macroevolution; uncertainty.].


Assuntos
Evolução Biológica , Fósseis , Evolução Molecular , Filogenia , Incerteza
12.
Curr Biol ; 30(24): R1473-R1476, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33352127

RESUMO

Studies in island systems underpin much of our knowledge of macroevolution. A new study of the Galápagos giant daisies adds to this tradition. A time-calibrated phylogeny is presented that offers insights into the factors associated with diversification, providing a framework for further studies to investigate processes underlying these findings.


Assuntos
Evolução Biológica , Plantas , Biologia , Equador , Filogenia
13.
Mol Phylogenet Evol ; 146: 106768, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32081764

RESUMO

Molecular phylogenies are used as a basis for making inferences about macroevolutionary history. However, a robust phylogeny does not contain the information that is necessary to make many of these inferences. Complex methodologies that incorporate important assumptions about the nature of evolutionary history are therefore required. Here, we explore the implications of these assumptions for making inferences about the macroevolutionary history of Ipomoea - a large pantropical genus of flowering plants that contains the sweet potato (Ipomoea batatas), a crop of global economic importance. We focus on assumptions that underlie inferences of divergence times, and diversification parameters (speciation rates, extinction rates, and net diversification rates). These are among the most fundamental variables in macroevolutionary research. We use a series of novel approaches to explore the implications of these assumptions for inferring the age of Ipomoea, the ages of major clades within Ipomoea, whether there are significant differences in diversification parameters among clades within Ipomoea, and whether the storage root of I. batatas evolved in pre-human times. We show that inferring an age estimate for Ipomoea and major clades within Ipomoea is highly problematic. Inferred divergence times are sensitive to uncertain fossil calibrations and differing assumptions about among-branch-substitution-rate-variation. Despite this uncertainty, we are able to make robust inferences about patterns of variation in diversification parameters within Ipomoea, and that the storage root of I. batatas evolved in pre-human times. Taken together, this study presents novel and generalizable insights into the implications of methodological assumptions for making inferences about macroevolutionary history. Further, by presenting novel findings relating to the temporal dynamics of evolution in Ipomoea, as well as more specifically to I. batatas, this study makes a valuable contribution to our understanding of tropical plant evolution, and the evolutionary context in which economically important crops evolve.


Assuntos
Evolução Biológica , Ipomoea/classificação , Produtos Agrícolas , Fósseis , Especiação Genética , Ipomoea/genética , Ipomoea batatas , Filogenia
14.
Mol Biol Evol ; 37(5): 1508-1529, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31899514

RESUMO

Relaxed clock methods account for among-branch-rate-variation when estimating divergence times by inferring different rates for individual branches. In order to infer different rates for individual branches, important assumptions are required. This is because molecular sequence data do not provide direct information about rates but instead provide direct information about the total number of substitutions along any branch, which is a product of the rate and time for that branch. Often, the assumptions required for estimating rates for individual branches depend heavily on the implementation of multiple fossil calibrations in a single phylogeny. Here, we show that the basis of these assumptions is often critically undermined. First, we highlight that the temporal distribution of the fossil record often violates key assumptions of methods that use multiple fossil calibrations with relaxed clocks. With respect to "node calibration" methods, this conclusion is based on our inference that different fossil calibrations are unlikely to reflect the relative ages of different clades. With respect to the fossilized birth-death process, this conclusion is based on our inference that the fossil recovery rate is often highly heterogeneous. We then demonstrate that methods of divergence time estimation that use multiple fossil calibrations are highly sensitive to assumptions about the fossil record and among-branch-rate-variation. Given the problems associated with these assumptions, our results highlight that using multiple fossil calibrations with relaxed clocks often does little to improve the accuracy of divergence time estimates.


Assuntos
Convolvulaceae/genética , Evolução Molecular , Fósseis , Técnicas Genéticas , Filogenia , Solanaceae/genética
15.
Syst Biol ; 69(4): 660-670, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31808929

RESUMO

Rate variation adds considerable complexity to divergence time estimation in molecular phylogenies. Here, we evaluate the impact of lineage-specific rates-which we define as among-branch-rate-variation that acts consistently across the entire genome. We compare its impact to residual rates-defined as among-branch-rate-variation that shows a different pattern of rate variation at each sampled locus, and gene-specific rates-defined as variation in the average rate across all branches at each sampled locus. We show that lineage-specific rates lead to erroneous divergence time estimates, regardless of how many loci are sampled. Further, we show that stronger lineage-specific rates lead to increasing error. This contrasts to residual rates and gene-specific rates, where sampling more loci significantly reduces error. If divergence times are inferred in a Bayesian framework, we highlight that error caused by lineage-specific rates significantly reduces the probability that the 95% highest posterior density includes the correct value, and leads to sensitivity to the prior. Use of a more complex rate prior-which has recently been proposed to model rate variation more accurately-does not affect these conclusions. Finally, we show that the scale of lineage-specific rates used in our simulation experiments is comparable to that of an empirical data set for the angiosperm genus Ipomoea. Taken together, our findings demonstrate that lineage-specific rates cause error in divergence time estimates, and that this error is not overcome by analyzing genomic scale multilocus data sets. [Divergence time estimation; error; rate variation.].


Assuntos
Classificação/métodos , Evolução Molecular , Filogenia , Especiação Genética , Genoma/genética , Tempo
16.
Nat Plants ; 5(11): 1136-1144, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712754

RESUMO

Taxonomic monographs have the potential to make a unique contribution to the understanding of global biodiversity. However, such studies, now rare, are often considered too daunting to undertake within a realistic time frame, especially as the world's collections have doubled in size in recent times. Here, we report a global-scale monographic study of morning glories (Ipomoea) that integrated DNA barcodes and high-throughput sequencing with the morphological study of herbarium specimens. Our approach overhauled the taxonomy of this megadiverse group, described 63 new species and uncovered significant increases in net diversification rates comparable to the most iconic evolutionary radiations in the plant kingdom. Finally, we show that more than 60 species of Ipomoea, including sweet potato, independently evolved storage roots in pre-human times, indicating that the storage root is not solely a product of human domestication but a trait that predisposed the species for cultivation. This study demonstrates how the world's natural history collections can contribute to global challenges in the Anthropocene.


Assuntos
Ipomoea/classificação , Bancos de Espécimes Biológicos , Código de Barras de DNA Taxonômico , DNA de Plantas , Evolução Molecular , Filogenia , Filogeografia , Análise de Sequência de DNA
17.
Curr Biol ; 28(8): 1246-1256.e12, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29657119

RESUMO

The sweet potato is one of the world's most widely consumed crops, yet its evolutionary history is poorly understood. In this paper, we present a comprehensive phylogenetic study of all species closely related to the sweet potato and address several questions pertaining to the sweet potato that remained unanswered. Our research combined genome skimming and target DNA capture to sequence whole chloroplasts and 605 single-copy nuclear regions from 199 specimens representing the sweet potato and all of its crop wild relatives (CWRs). We present strongly supported nuclear and chloroplast phylogenies demonstrating that the sweet potato had an autopolyploid origin and that Ipomoea trifida is its closest relative, confirming that no other extant species were involved in its origin. Phylogenetic analysis of nuclear and chloroplast genomes shows conflicting topologies regarding the monophyly of the sweet potato. The process of chloroplast capture explains these conflicting patterns, showing that I. trifida had a dual role in the origin of the sweet potato, first as its progenitor and second as the species with which the sweet potato introgressed so one of its lineages could capture an I. trifida chloroplast. In addition, we provide evidence that the sweet potato was present in Polynesia in pre-human times. This, together with several other examples of long-distance dispersal in Ipomoea, negates the need to invoke ancient human-mediated transport as an explanation for its presence in Polynesia. These results have important implications for understanding the origin and evolution of a major global food crop and question the existence of pre-Columbian contacts between Polynesia and the American continent.


Assuntos
Ipomoea batatas/genética , Ipomoea/genética , Evolução Biológica , Núcleo Celular/genética , Cloroplastos/genética , Produtos Agrícolas/genética , Genes de Plantas/genética , Genoma de Cloroplastos/genética , Genoma de Planta/genética , Filogenia , Polinésia
18.
PLoS One ; 6(12): e27693, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174745

RESUMO

Atlantic bluefin tuna (Thunnus thynnus) is considered to be overfished, but the status of its populations has been debated, partly because of uncertainties regarding the effects of mixing on fishing grounds. A better understanding of spatial structure and mixing may help fisheries managers to successfully rebuild populations to sustainable levels while maximizing catches. We formulate a new seasonally and spatially explicit fisheries model that is fitted to conventional and electronic tag data, historic catch-at-age reconstructions, and otolith microchemistry stock-composition data to improve the capacity to assess past, current, and future population sizes of Atlantic bluefin tuna. We apply the model to estimate spatial and temporal mixing of the eastern (Mediterranean) and western (Gulf of Mexico) populations, and to reconstruct abundances from 1950 to 2008. We show that western and eastern populations have been reduced to 17% and 33%, respectively, of 1950 spawning stock biomass levels. Overfishing to below the biomass that produces maximum sustainable yield occurred in the 1960s and the late 1990s for western and eastern populations, respectively. The model predicts that mixing depends on season, ontogeny, and location, and is highest in the western Atlantic. Assuming that future catches are zero, western and eastern populations are predicted to recover to levels at maximum sustainable yield by 2025 and 2015, respectively. However, the western population will not recover with catches of 1750 and 12,900 tonnes (the "rebuilding quotas") in the western and eastern Atlantic, respectively, with or without closures in the Gulf of Mexico. If future catches are double the rebuilding quotas, then rebuilding of both populations will be compromised. If fishing were to continue in the eastern Atlantic at the unregulated levels of 2007, both stocks would continue to decline. Since populations mix on North Atlantic foraging grounds, successful rebuilding policies will benefit from trans-Atlantic cooperation.


Assuntos
Biomassa , Cruzamento , Modelos Biológicos , Atum/crescimento & desenvolvimento , Animais , Oceano Atlântico , Pesqueiros , Dinâmica Populacional , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA